Anticausativization and lability in Romance: a historical corpus study on Spanish and Italian

published in Inglese, Guglielmo, Eugenio Goria and Giulia Mazzola (eds.). Diachronic and Typological Perspectives on Anticausativization. Series: Typological Studies in Language. Amsterdam: John Benjamins.

Authors
Affiliations

Guglielmo Inglese

Università di Torino

Giulia Mazzola

Newcastle University

Eugenio Goria

Università di Torino

Lorenzo Ferrarotti

Università di Bergamo

Bert Cornillie

KU Leuven

Replication materials for: Inglese, Mazzola, Goria, Ferrarotti & Cornillie, “Anticausativization and lability in Romance: a historical corpus study on Spanish and Italian” in Inglese, Mazzola & Goria Diachronic and Typological Perspectives on Anticausativization (Accepted December 2025). Full citation information will be released after publication.

GitHub repository

Intro

Load and Prepare Data

# List of packages used in this document
pkgs <- c("tidyverse", "lme4", "kableExtra", "readxl", 
          "Boruta", "ranger", "vip", "dplyr", 
          "purrr", "stringr", "ggpattern")

# Install any missing packages
new_pkgs <- pkgs[!(pkgs %in% installed.packages()[, "Package"])]
if(length(new_pkgs)) install.packages(new_pkgs)

# Load all packages
lapply(pkgs, library, character.only = TRUE)
data_all <- read_excel("romall_new_VNC_pub.xlsx")
data <- read_excel("Inglese_et_al_noncaus_july25_newVNC_pub.xlsx")

Data preparation, summary and NAs check:

data$period <- data$vnc_period_apr25
data$caus_use <- data$caus_use_jul25

summarydata <- fct_count(data$coding)
languagesummary <- fct_count(data$language)

vars_to_check <- c("coding", "telicity", "animacy", "finiteness", "genre", "control", "language", 
                   "reflpriming", "caus_use", "year")

any_na_rows <- data[!complete.cases(data[, vars_to_check]), ]
n_na <- nrow(any_na_rows)
cat("Number of rows with NA in model variables:", n_na, "\n")
Number of rows with NA in model variables: 0 
na_counts <- colSums(is.na(data[, vars_to_check]))
na_counts[na_counts > 0]
named numeric(0)
data <- data %>% mutate(across(
  c(coding, telicity, animacy, finiteness, compound_tense, genre, time, 
    control, aspect, language, mood, subjcoding, reflpriming), 
  ~factor(.x)))

levels(data$language) <- str_to_sentence(levels(data$language))

Rationale

Object of the study

A comparative diachronic corpus study of Italian and Spanish focuses on the alternation between anticausativization (reflexive marking) and lability as noncausal marking strategies.

Research Questions
  1. What are the factors that influence the choice between the anticausative and the labile strategies in Italian and Spanish?
  2. Do these factors change over time?
  3. Do the strength and relevance of these factors change when Italian and Spanish are compared?
Data
  • Italian: MIDIA corpus (D’Achille & Grossmann 2017), ~7.8 million words, balanced across tokens and genres (13th–mid-20th centuries).
  • Spanish: Corpus del Diccionario Histórico del Español (CDH, Real Academia Española 2013), Peninsular Spanish only.
  • We extracted a sample of occurrences for the Italian and Spanish equivalents of the 20 verb meaning pairs listed in Haspelmath et al. (2014). See paper for the complete procedure.

The complete dataset includes causal and noncausal uses of the verbs extracted, contained in the dataset data_all. For this study we only include noncausal observations and only verbs with variability (data). We therefore removed the verbs with categorical selection of wither anticausative or labile marking. Figure 2 and 3 show the lemmas per language and the proportion of anticausative vs. labile marking, before filtering to only include the vairable contexts.

Figure 1:

# ---- Italian data ----
italian_data <- data_all %>%
  filter(semantics == "noncaus", language == "italian") %>%
  group_by(lemma, coding) %>%
  summarise(n = n(), .groups = "drop") %>%
  complete(lemma, coding = c("antic", "zero"), fill = list(n = 0)) %>%
  group_by(lemma) %>%
  mutate(perc = n / sum(n) * 100) %>%
  ungroup() %>%
  mutate(
    coding_label = recode(coding, "antic" = "Anticausative", "zero" = "Labile"),
    coding_label = factor(coding_label, levels = c("Anticausative", "Labile"))
  )

# Order lemmas by Anticausative %
italian_order <- italian_data %>%
  filter(coding_label == "Anticausative") %>%
  arrange(desc(perc)) %>%
  pull(lemma)

italian_data <- italian_data %>%
  mutate(lemma = factor(lemma, levels = italian_order))

# ---- Plot Italian ----
plot_italian <- ggplot(italian_data, aes(x = lemma, y = perc, fill = coding_label)) +
  geom_col(position = "stack") +
  scale_fill_manual(values = c("Anticausative" = "grey30", "Labile" = "grey80")) +
  labs(x = "Verbs", y = "Percentage", fill = "Patterns") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))

# ---- Print plots ----
plot_italian

Figure 2:

# ---- Spanish data ----
spanish_data <- data_all %>%
  filter(semantics == "noncaus", language == "spanish") %>%
  group_by(lemma, coding) %>%
  summarise(n = n(), .groups = "drop") %>%
  complete(lemma, coding = c("antic", "zero"), fill = list(n = 0)) %>%
  group_by(lemma) %>%
  mutate(perc = n / sum(n) * 100) %>%
  ungroup() %>%
  mutate(
    coding_label = recode(coding, "antic" = "Anticausative", "zero" = "Labile"),
    coding_label = factor(coding_label, levels = c("Anticausative", "Labile"))
  )


# Order lemmas by Anticausative %
spanish_order <- spanish_data %>%
  filter(coding_label == "Anticausative") %>%
  arrange(desc(perc)) %>%
  pull(lemma)

spanish_data <- spanish_data %>%
  mutate(lemma = factor(lemma, levels = spanish_order))

# ---- Plot Spanish ----
plot_spanish <- ggplot(spanish_data, aes(x = lemma, y = perc, fill = coding_label)) +
  geom_col(position = "stack") +
  scale_fill_manual(values = c("Anticausative" = "grey30", "Labile" = "grey80")) +
  labs(x = "Verbs", y = "Percentage", fill = "Patterns") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))

plot_spanish

The filtered dataset used for this study is contained in data and includes 5154 noncausal observations. The variables used in the following statistical analysis were manually annotated and are distributed as reported in the table below (Table 1 in the paper):

vars_to_check <- c(
  "coding", "telicity", "animacy", "finiteness", "genre",
  "control", "language", "reflpriming"
)

# ---- Factor variables ----
table_factors <- map_dfr(vars_to_check, function(v) {

  data %>%
    count(.data[[v]]) %>%
    mutate(
      Variables = str_to_sentence(v),
      Values = str_to_sentence(as.character(.data[[v]])),
      `N. occurrences` = n
    ) %>%
    select(Variables, Values, `N. occurrences`)
})

# ---- Numeric variables (manual add) ----
table_numeric <- tibble(
  Variables = str_to_sentence(c("caus_use", "year")),
  Values = c(
    paste0(min(data$caus_use, na.rm = TRUE), " – ",
           max(data$caus_use, na.rm = TRUE)),
    paste0(min(data$year, na.rm = TRUE), " – ",
           max(data$year, na.rm = TRUE))
  ),
  `N. occurrences` = NA_integer_
)

# ---- Combine & print ----
bind_rows(table_factors, table_numeric) %>%
  kbl(
    booktabs = TRUE,
    align = "l",
    caption = "Distribution of variables"
  ) %>%
  kable_styling(
    full_width = FALSE,
    bootstrap_options = c("striped", "hover")
  ) %>%
  collapse_rows(
    columns = 1,
    valign = "top"
  )
Distribution of variables
Variables Values N. occurrences
Coding Antic 3209
Zero 1945
Telicity Atelic 1612
Telic 3542
Animacy No 2783
Yes 2371
Finiteness Fin 4055
Nonfin 1099
Genre Poesia 997
Prosa 3782
Teatro 375
Control No 3367
Yes 1787
Language Italian 2468
Spanish 2686
Reflpriming No 4648
Yes 506
Caus_use 0 – 0.939393939393939 NA
Year 1140 – 2001 NA

Statistical analyses

Random Forest for Variable Importance

As a first step in exploring our data, we fitted a random forest (RF) model to inspect the relative importance of the predictors. RF are a type of decision tree ensemble model that can be used to detect patterns in the data and assess which variables are most strongly associated with the outcome (Levshina 2020), and help us making decisions about the regression model.

set.seed(123)
rf1 <- ranger(coding ~ year + caus_use_jul25 + 
                telicity + animacy + finiteness + compound_tense + 
                genre + time + control + aspect + language + mood +  
                subjcoding + reflpriming,
              data = data, importance = "impurity_corrected")

Figure 3:

rflabels<- c( "Compound tense","Tense", "Mood", "Reflexive Priming", "Aspect",  "Subject Coding", "Finiteness", "Language", "Genre", "Animacy", "Year", "Control", "Causalness degree", "Telicity")

rf_plot<-vip(rf1, num_features = 15) + scale_x_discrete(labels = rflabels)

rf_plot

Random Forest - Variables imporance:

vip:::vi(rf1) %>% 
  mutate_if(is.numeric, ~ round(.x, 2)) %>%
  kbl() %>% 
  kable_styling()
Variable Importance
telicity 650.30
caus_use_jul25 321.60
control 86.22
year 47.00
animacy 28.38
genre 21.84
language 16.64
aspect 8.36
finiteness 7.91
subjcoding 7.13
reflpriming 6.75
time 3.11
mood 2.27
compound_tense 0.70

Random Forest - Model diagnostics

rf2 <- ranger(coding ~ year +  caus_use_jul25 + 
                telicity + animacy + finiteness + compound_tense + 
                genre + time + control + aspect + language + mood +  
                subjcoding + reflpriming,
              data = data)

rf2_pred_df <- bind_cols(data, .pred = predict(rf2, data)$predictions)

diagnostics <- Hmisc::somers2(as.numeric(rf2_pred_df$.pred) - 1, 
                               as.numeric(rf2_pred_df$coding) - 1) %>% 
  enframe() %>% 
  mutate(value = round(value, 2))

diagnostics %>% kbl() %>% kable_styling()
name value
C 0.93
Dxy 0.86
n 5154.00
Missing 0.00

Mixed-effect logistic regression

A logistic regression model with mixed effects predicts the outcome of a binary variable (in our case, SE vs. lability) given multiple explanatory factors (and their interactions), and also includes control variables, called random effects. These models are useful when the data have a hierarchical or grouped structure, as they allow us to account for variability due to such groupings, —here, verbs (LEMMA) and authors (AUTHOR).

The models were calculated using the lme4::glmer function (Bates et al. 2015), fitting a maximal interaction model, i.e., including all interactions between predictors and the variables YEAR or LANGUAGE.

Polynomial

We do not assume a linear relation between year and the other predictors, i.e. we appreciate that the effects could fluctuate over time, losing predictive power or direction of the effects. This is why we included YEAR as a polynomial.

We fitted a linear, quadratic and a cubic model (only with simple effects). We compared the AIC, BIC and used ANOVA to compare pairs of nested models. All these tests showed that a quadratic polynomial is the best fit for the diachronic development of the dependent variable (SE vs. lability): it improves the fit compared to the linear model and it does not need a cubic term; AIC and BIC for the quadratic models are the lowest.

# Linear
mod_lin <- glmer(coding ~ telicity + animacy + finiteness + compound_tense +genre +
                control + language + reflpriming + caus_use + poly(year,1) +
                (1|lemma) + (1|author),
                family="binomial", data=data, nAGQ=0)
# Quadratic


mod_quad <- glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
                control + language + reflpriming + caus_use + poly(year,2) +
                (1|lemma) + (1|author),
                family="binomial", data=data, nAGQ=0)

# Cubic

mod_cub <- glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
                control + language + reflpriming + caus_use + poly(year,3) +
                (1|lemma) + (1|author),
                family="binomial", data=data, nAGQ=0)

AIC(mod_lin, mod_cub, mod_quad)
         df      AIC
mod_lin  14 2643.264
mod_cub  16 2642.871
mod_quad 15 2641.216
BIC(mod_lin, mod_cub, mod_quad)
         df      BIC
mod_lin  14 2734.929
mod_cub  16 2747.631
mod_quad 15 2739.429
anova(mod_lin, mod_quad)
Data: data
Models:
mod_lin: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 1) + (1 | lemma) + (1 | author)
mod_quad: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + (1 | lemma) + (1 | author)
         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
mod_lin    14 2643.3 2734.9 -1307.6   2615.3                       
mod_quad   15 2641.2 2739.4 -1305.6   2611.2 4.0478  1    0.04423 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod_cub, mod_quad)
Data: data
Models:
mod_quad: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + (1 | lemma) + (1 | author)
mod_cub: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 3) + (1 | lemma) + (1 | author)
         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod_quad   15 2641.2 2739.4 -1305.6   2611.2                     
mod_cub    16 2642.9 2747.6 -1305.4   2610.9 0.3454  1     0.5567

Model selection

The most parsimonious interaction model was found by performing a step-wise backward selection procedure, which consists in removing non-significant interactions one by one, starting from the one with the highest p-value.

First we fit the maximal model with all variables and interactions:

mod_all<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
                      control + language + reflpriming + caus_use + poly(year,2) +
                #year
                  telicity*poly(year,2) + animacy*poly(year,2) + finiteness*poly(year,2) + compound_tense*poly(year,2) + 
                 genre*poly(year,2) + control*poly(year,2) + language*poly(year,2) + 
                 reflpriming*poly(year,2) + caus_use*poly(year,2) +
                #language
                  telicity*language+ animacy*language+ finiteness*language+ compound_tense*language+ genre*language+
                  control*language+ reflpriming*language+ caus_use*language+
                #random
                (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)

summary(mod_all)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    finiteness * poly(year, 2) + compound_tense * poly(year,  
    2) + genre * poly(year, 2) + control * poly(year, 2) + language *  
    poly(year, 2) + reflpriming * poly(year, 2) + caus_use *  
    poly(year, 2) + telicity * language + animacy * language +  
    finiteness * language + compound_tense * language + genre *  
    language + control * language + reflpriming * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2609.9   2898.0  -1261.0   2521.9     5110 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.7873 -0.2150 -0.1132  0.2094 11.1910 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2164   0.4652  
 lemma  (Intercept) 5.0986   2.2580  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.40499    0.74866   0.541 0.588540    
telicitytelic                      -2.19744    0.41309  -5.319 1.04e-07 ***
animacyyes                          1.05674    0.37433   2.823 0.004758 ** 
finitenessnonfin                    0.72955    0.22499   3.243 0.001185 ** 
compound_tenseyes                   0.95798    0.39661   2.415 0.015718 *  
genreProsa                         -0.59627    0.22444  -2.657 0.007891 ** 
genreTeatro                        -0.35637    0.32793  -1.087 0.277152    
controlyes                         -1.27666    0.44580  -2.864 0.004186 ** 
languageSpanish                     0.08508    1.02514   0.083 0.933856    
reflprimingyes                     -1.31152    0.37642  -3.484 0.000494 ***
caus_use                            0.32063    0.83799   0.383 0.701999    
poly(year, 2)1                     33.39782   16.53895   2.019 0.043452 *  
poly(year, 2)2                      0.44726   16.08470   0.028 0.977816    
telicitytelic:poly(year, 2)1      -24.28686   11.33634  -2.142 0.032162 *  
telicitytelic:poly(year, 2)2      -26.95656   10.30288  -2.616 0.008886 ** 
animacyyes:poly(year, 2)1          -1.28888   11.77304  -0.109 0.912824    
animacyyes:poly(year, 2)2         -20.63096   11.24370  -1.835 0.066522 .  
finitenessnonfin:poly(year, 2)1    -3.49210   10.77803  -0.324 0.745937    
finitenessnonfin:poly(year, 2)2     0.99589   10.21325   0.098 0.922322    
compound_tenseyes:poly(year, 2)1  -50.32779   21.42149  -2.349 0.018803 *  
compound_tenseyes:poly(year, 2)2  -15.57524   21.04247  -0.740 0.459190    
genreProsa:poly(year, 2)1         -27.31368   14.04492  -1.945 0.051807 .  
genreTeatro:poly(year, 2)1          9.22838   23.68108   0.390 0.696763    
genreProsa:poly(year, 2)2          18.22159   12.75048   1.429 0.152978    
genreTeatro:poly(year, 2)2         -4.77803   22.99945  -0.208 0.835428    
controlyes:poly(year, 2)1          26.87501   13.17733   2.039 0.041401 *  
controlyes:poly(year, 2)2          -5.80183   12.27343  -0.473 0.636417    
languageSpanish:poly(year, 2)1      4.64850   11.78480   0.394 0.693250    
languageSpanish:poly(year, 2)2     -0.18386   11.76494  -0.016 0.987531    
reflprimingyes:poly(year, 2)1       8.44986   15.24258   0.554 0.579333    
reflprimingyes:poly(year, 2)2       3.33422   14.03653   0.238 0.812239    
caus_use:poly(year, 2)1           -23.56069   23.89754  -0.986 0.324180    
caus_use:poly(year, 2)2            28.51399   22.17092   1.286 0.198409    
telicitytelic:languageSpanish       1.42471    0.50389   2.827 0.004692 ** 
animacyyes:languageSpanish         -0.25338    0.45267  -0.560 0.575650    
finitenessnonfin:languageSpanish   -0.51375    0.28422  -1.808 0.070666 .  
compound_tenseyes:languageSpanish  -0.76066    0.58092  -1.309 0.190392    
genreProsa:languageSpanish          0.21263    0.34075   0.624 0.532630    
genreTeatro:languageSpanish        -0.70863    0.61600  -1.150 0.249996    
controlyes:languageSpanish          0.73903    0.54686   1.351 0.176569    
languageSpanish:reflprimingyes      0.77442    0.46226   1.675 0.093876 .  
languageSpanish:caus_use           -2.53425    1.06053  -2.390 0.016866 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By inspecting the model summary we procede with the elimination of the first least significant intercation, language*poly(year,2).

# remove language:year

mod1<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + finiteness*poly(year,2) + compound_tense*poly(year,2) + genre*poly(year,2) +
              control*poly(year,2) + reflpriming*poly(year,2) + caus_use*poly(year,2) +
              #language
              telicity*language+ animacy*language+ finiteness*language+ compound_tense*language+ genre*language+
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod1)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    finiteness * poly(year, 2) + compound_tense * poly(year,  
    2) + genre * poly(year, 2) + control * poly(year, 2) + reflpriming *  
    poly(year, 2) + caus_use * poly(year, 2) + telicity * language +  
    animacy * language + finiteness * language + compound_tense *  
    language + genre * language + control * language + reflpriming *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2606.1   2881.1  -1261.0   2522.1     5112 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.3982 -0.2150 -0.1139  0.2102 11.1985 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2177   0.4666  
 lemma  (Intercept) 5.0961   2.2575  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.39230    0.74661   0.525 0.599277    
telicitytelic                      -2.19729    0.41354  -5.313 1.08e-07 ***
animacyyes                          1.05367    0.37369   2.820 0.004808 ** 
finitenessnonfin                    0.72751    0.22425   3.244 0.001178 ** 
compound_tenseyes                   0.95198    0.39615   2.403 0.016257 *  
genreProsa                         -0.59575    0.22425  -2.657 0.007892 ** 
genreTeatro                        -0.35021    0.32739  -1.070 0.284762    
controlyes                         -1.28913    0.44443  -2.901 0.003724 ** 
languageSpanish                     0.07796    1.02413   0.076 0.939318    
reflprimingyes                     -1.31249    0.37632  -3.488 0.000487 ***
caus_use                            0.34969    0.83135   0.421 0.674023    
poly(year, 2)1                     33.93167   16.48071   2.059 0.039507 *  
poly(year, 2)2                     -0.21185   15.44538  -0.014 0.989056    
telicitytelic:poly(year, 2)1      -24.40141   11.33997  -2.152 0.031413 *  
telicitytelic:poly(year, 2)2      -26.75610   10.28271  -2.602 0.009267 ** 
animacyyes:poly(year, 2)1          -0.75738   11.70432  -0.065 0.948406    
animacyyes:poly(year, 2)2         -20.71886   11.15169  -1.858 0.063181 .  
finitenessnonfin:poly(year, 2)1    -3.72487   10.77288  -0.346 0.729520    
finitenessnonfin:poly(year, 2)2     1.14890   10.21358   0.112 0.910437    
compound_tenseyes:poly(year, 2)1  -50.65284   21.40967  -2.366 0.017987 *  
compound_tenseyes:poly(year, 2)2  -15.84424   21.05255  -0.753 0.451688    
genreProsa:poly(year, 2)1         -25.49010   13.06657  -1.951 0.051082 .  
genreTeatro:poly(year, 2)1          9.31678   23.45156   0.397 0.691163    
genreProsa:poly(year, 2)2          18.91926   11.80235   1.603 0.108933    
genreTeatro:poly(year, 2)2         -3.43107   22.74751  -0.151 0.880108    
controlyes:poly(year, 2)1          26.81281   13.18044   2.034 0.041923 *  
controlyes:poly(year, 2)2          -6.01864   12.26139  -0.491 0.623524    
reflprimingyes:poly(year, 2)1       8.74942   15.21229   0.575 0.565187    
reflprimingyes:poly(year, 2)2       3.16663   14.01661   0.226 0.821264    
caus_use:poly(year, 2)1           -22.37107   23.66925  -0.945 0.344580    
caus_use:poly(year, 2)2            28.64179   22.13466   1.294 0.195673    
telicitytelic:languageSpanish       1.42524    0.50422   2.827 0.004705 ** 
animacyyes:languageSpanish         -0.24983    0.45207  -0.553 0.580510    
finitenessnonfin:languageSpanish   -0.50645    0.28289  -1.790 0.073403 .  
compound_tenseyes:languageSpanish  -0.74728    0.57946  -1.290 0.197188    
genreProsa:languageSpanish          0.23142    0.33402   0.693 0.488414    
genreTeatro:languageSpanish        -0.67788    0.60970  -1.112 0.266211    
controlyes:languageSpanish          0.74910    0.54593   1.372 0.170013    
languageSpanish:reflprimingyes      0.77459    0.46234   1.675 0.093860 .  
languageSpanish:caus_use           -2.55745    1.04522  -2.447 0.014413 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod_all, mod1)
Data: data
Models:
mod1: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + finiteness * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + reflpriming * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming *      language + caus_use * language + (1 | lemma) + (1 | author)
mod_all: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + finiteness * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + language * poly(year, 2) + reflpriming * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control *      language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
        npar    AIC    BIC logLik deviance  Chisq Df Pr(>Chisq)
mod1      42 2606.1 2881.1  -1261   2522.1                     
mod_all   44 2609.9 2898.0  -1261   2521.9 0.1625  2      0.922

The ANOVA comparison shows that mod1 is better than mod_all, as removing the interaction does not significantly affect the model fit (the p-value is below significance level). We proceed by removing the least significant interactions terms one-by-one and compare with ANOVA, until we reach the final model, model12.

Remove reflpriming:poly(year, 2)

# remove reflprimingyes:poly(year, 2)

mod2<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + finiteness*poly(year,2) + compound_tense*poly(year,2) + genre*poly(year,2) +
              control*poly(year,2) + caus_use*poly(year,2) +
              #language
              telicity*language+ animacy*language+ finiteness*language+ compound_tense*language+ genre*language+
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod2)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    finiteness * poly(year, 2) + compound_tense * poly(year,  
    2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use *  
    poly(year, 2) + telicity * language + animacy * language +  
    finiteness * language + compound_tense * language + genre *  
    language + control * language + reflpriming * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2602.4   2864.3  -1261.2   2522.4     5114 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.3099 -0.2148 -0.1138  0.2103 10.5369 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2174   0.4663  
 lemma  (Intercept) 5.1010   2.2585  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.39195    0.74660   0.525 0.599599    
telicitytelic                      -2.19692    0.41351  -5.313 1.08e-07 ***
animacyyes                          1.05213    0.37349   2.817 0.004848 ** 
finitenessnonfin                    0.73052    0.22406   3.260 0.001113 ** 
compound_tenseyes                   0.94581    0.39615   2.388 0.016963 *  
genreProsa                         -0.59102    0.22395  -2.639 0.008312 ** 
genreTeatro                        -0.34893    0.32808  -1.064 0.287538    
controlyes                         -1.28918    0.44436  -2.901 0.003717 ** 
languageSpanish                     0.09488    1.02280   0.093 0.926091    
reflprimingyes                     -1.32751    0.37597  -3.531 0.000414 ***
caus_use                            0.34579    0.83091   0.416 0.677294    
poly(year, 2)1                     34.99408   16.39719   2.134 0.032830 *  
poly(year, 2)2                      0.43033   15.23893   0.028 0.977471    
telicitytelic:poly(year, 2)1      -24.26891   11.32692  -2.143 0.032146 *  
telicitytelic:poly(year, 2)2      -26.95003   10.23544  -2.633 0.008463 ** 
animacyyes:poly(year, 2)1          -0.69241   11.60801  -0.060 0.952435    
animacyyes:poly(year, 2)2         -21.17860   11.04972  -1.917 0.055281 .  
finitenessnonfin:poly(year, 2)1    -3.61152   10.77201  -0.335 0.737422    
finitenessnonfin:poly(year, 2)2     1.12707   10.20334   0.110 0.912044    
compound_tenseyes:poly(year, 2)1  -50.97581   21.38844  -2.383 0.017157 *  
compound_tenseyes:poly(year, 2)2  -15.53787   21.03734  -0.739 0.460159    
genreProsa:poly(year, 2)1         -25.45090   13.05124  -1.950 0.051167 .  
genreTeatro:poly(year, 2)1          9.43822   23.50149   0.402 0.687978    
genreProsa:poly(year, 2)2          19.16725   11.71397   1.636 0.101783    
genreTeatro:poly(year, 2)2         -3.53216   22.72296  -0.155 0.876471    
controlyes:poly(year, 2)1          26.48886   13.09906   2.022 0.043156 *  
controlyes:poly(year, 2)2          -5.82345   12.17452  -0.478 0.632415    
caus_use:poly(year, 2)1           -23.27363   23.60731  -0.986 0.324199    
caus_use:poly(year, 2)2            27.78972   22.08722   1.258 0.208326    
telicitytelic:languageSpanish       1.42182    0.50415   2.820 0.004799 ** 
animacyyes:languageSpanish         -0.25458    0.45191  -0.563 0.573209    
finitenessnonfin:languageSpanish   -0.50993    0.28272  -1.804 0.071287 .  
compound_tenseyes:languageSpanish  -0.73725    0.57931  -1.273 0.203144    
genreProsa:languageSpanish          0.22742    0.33374   0.681 0.495596    
genreTeatro:languageSpanish        -0.68064    0.61002  -1.116 0.264522    
controlyes:languageSpanish          0.75613    0.54580   1.385 0.165942    
languageSpanish:reflprimingyes      0.78005    0.45937   1.698 0.089489 .  
languageSpanish:caus_use           -2.57990    1.03880  -2.484 0.013008 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod2, mod1)
Data: data
Models:
mod2: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + finiteness * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming * language + caus_use * language +      (1 | lemma) + (1 | author)
mod1: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + finiteness * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + reflpriming * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming *      language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod2   40 2602.4 2864.3 -1261.2   2522.4                     
mod1   42 2606.1 2881.1 -1261.0   2522.1 0.3341  2     0.8462

Remove finiteness:poly(year, 2)

#finitenessnonfin:poly(year, 2)

mod3<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + caus_use*poly(year,2) +
              #language
              telicity*language+ animacy*language+ finiteness*language+ compound_tense*language+ genre*language+
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod3)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + caus_use * poly(year, 2) + telicity *  
    language + animacy * language + finiteness * language + compound_tense *  
    language + genre * language + control * language + reflpriming *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2598.5   2847.3  -1261.3   2522.5     5116 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.4888 -0.2150 -0.1140  0.2108 10.4773 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2158   0.4645  
 lemma  (Intercept) 5.1019   2.2587  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.3897     0.7465   0.522 0.601650    
telicitytelic                      -2.2000     0.4131  -5.325 1.01e-07 ***
animacyyes                          1.0553     0.3733   2.827 0.004699 ** 
finitenessnonfin                    0.7240     0.2196   3.297 0.000978 ***
compound_tenseyes                   0.9458     0.3958   2.390 0.016869 *  
genreProsa                         -0.5931     0.2238  -2.650 0.008043 ** 
genreTeatro                        -0.3449     0.3275  -1.053 0.292362    
controlyes                         -1.2911     0.4442  -2.907 0.003652 ** 
languageSpanish                     0.1012     1.0223   0.099 0.921168    
reflprimingyes                     -1.3284     0.3755  -3.538 0.000403 ***
caus_use                            0.3539     0.8302   0.426 0.669924    
poly(year, 2)1                     34.3128    16.2423   2.113 0.034639 *  
poly(year, 2)2                      0.5570    15.0018   0.037 0.970384    
telicitytelic:poly(year, 2)1      -23.8718    11.2669  -2.119 0.034112 *  
telicitytelic:poly(year, 2)2      -27.1609    10.1868  -2.666 0.007669 ** 
animacyyes:poly(year, 2)1          -1.0686    11.5463  -0.093 0.926259    
animacyyes:poly(year, 2)2         -21.0320    11.0261  -1.907 0.056459 .  
compound_tenseyes:poly(year, 2)1  -50.6192    21.3407  -2.372 0.017694 *  
compound_tenseyes:poly(year, 2)2  -15.5197    20.9565  -0.741 0.458958    
genreProsa:poly(year, 2)1         -25.3404    13.0299  -1.945 0.051801 .  
genreTeatro:poly(year, 2)1          9.0890    23.4572   0.387 0.698407    
genreProsa:poly(year, 2)2          18.9435    11.6804   1.622 0.104842    
genreTeatro:poly(year, 2)2         -3.2956    22.6719  -0.145 0.884427    
controlyes:poly(year, 2)1          26.3392    13.0922   2.012 0.044239 *  
controlyes:poly(year, 2)2          -5.8408    12.1515  -0.481 0.630756    
caus_use:poly(year, 2)1           -23.3948    23.5607  -0.993 0.320732    
caus_use:poly(year, 2)2            28.1115    22.0345   1.276 0.202029    
telicitytelic:languageSpanish       1.4244     0.5039   2.827 0.004701 ** 
animacyyes:languageSpanish         -0.2559     0.4518  -0.566 0.571190    
finitenessnonfin:languageSpanish   -0.5070     0.2811  -1.803 0.071338 .  
compound_tenseyes:languageSpanish  -0.7335     0.5787  -1.267 0.205017    
genreProsa:languageSpanish          0.2259     0.3335   0.677 0.498144    
genreTeatro:languageSpanish        -0.6852     0.6098  -1.124 0.261139    
controlyes:languageSpanish          0.7568     0.5455   1.387 0.165320    
languageSpanish:reflprimingyes      0.7797     0.4588   1.699 0.089247 .  
languageSpanish:caus_use           -2.5936     1.0372  -2.501 0.012397 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod2, mod3)
Data: data
Models:
mod3: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod2: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + finiteness * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming * language + caus_use * language +      (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod3   38 2598.5 2847.3 -1261.3   2522.5                     
mod2   40 2602.4 2864.3 -1261.2   2522.4 0.1194  2      0.942

Remove genre:language

#genre:language

mod4<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + caus_use*poly(year,2) +
              #language
              telicity*language+ animacy*language+ finiteness*language+ compound_tense*language+ 
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod4)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + caus_use * poly(year, 2) + telicity *  
    language + animacy * language + finiteness * language + compound_tense *  
    language + control * language + reflpriming * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2597.4   2833.1  -1262.7   2525.4     5118 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.9980 -0.2166 -0.1154  0.2084 10.3774 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2122   0.4606  
 lemma  (Intercept) 5.1300   2.2650  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.35409    0.74055   0.478 0.632545    
telicitytelic                      -2.19375    0.41264  -5.316 1.06e-07 ***
animacyyes                          1.06842    0.37199   2.872 0.004077 ** 
finitenessnonfin                    0.71006    0.21862   3.248 0.001162 ** 
compound_tenseyes                   0.94504    0.39507   2.392 0.016753 *  
genreProsa                         -0.47683    0.17406  -2.739 0.006155 ** 
genreTeatro                        -0.51273    0.28431  -1.803 0.071328 .  
controlyes                         -1.28346    0.44229  -2.902 0.003710 ** 
languageSpanish                     0.19869    0.98468   0.202 0.840087    
reflprimingyes                     -1.33386    0.37554  -3.552 0.000382 ***
caus_use                            0.32847    0.82890   0.396 0.691901    
poly(year, 2)1                     34.68193   16.16483   2.146 0.031911 *  
poly(year, 2)2                      1.59954   14.84409   0.108 0.914189    
telicitytelic:poly(year, 2)1      -24.26644   11.24722  -2.158 0.030963 *  
telicitytelic:poly(year, 2)2      -27.65528   10.18061  -2.716 0.006598 ** 
animacyyes:poly(year, 2)1          -0.02539   11.45594  -0.002 0.998232    
animacyyes:poly(year, 2)2         -20.85659   10.97189  -1.901 0.057314 .  
compound_tenseyes:poly(year, 2)1  -49.52388   21.36581  -2.318 0.020455 *  
compound_tenseyes:poly(year, 2)2  -13.14826   20.97386  -0.627 0.530733    
genreProsa:poly(year, 2)1         -25.82030   12.91071  -2.000 0.045510 *  
genreTeatro:poly(year, 2)1          3.15715   23.34743   0.135 0.892434    
genreProsa:poly(year, 2)2          18.19720   11.47024   1.586 0.112633    
genreTeatro:poly(year, 2)2        -11.42270   22.23109  -0.514 0.607380    
controlyes:poly(year, 2)1          25.41198   12.97540   1.958 0.050174 .  
controlyes:poly(year, 2)2          -5.74013   12.08826  -0.475 0.634893    
caus_use:poly(year, 2)1           -23.14298   23.51364  -0.984 0.324999    
caus_use:poly(year, 2)2            28.13574   22.02434   1.277 0.201431    
telicitytelic:languageSpanish       1.45617    0.50329   2.893 0.003812 ** 
animacyyes:languageSpanish         -0.28837    0.45039  -0.640 0.521997    
finitenessnonfin:languageSpanish   -0.48929    0.28033  -1.745 0.080914 .  
compound_tenseyes:languageSpanish  -0.77813    0.58036  -1.341 0.179994    
controlyes:languageSpanish          0.75467    0.54413   1.387 0.165466    
languageSpanish:reflprimingyes      0.79330    0.45855   1.730 0.083623 .  
languageSpanish:caus_use           -2.57614    1.03571  -2.487 0.012871 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod4, mod3)
Data: data
Models:
mod4: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod3: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + genre * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod4   36 2597.4 2833.1 -1262.7   2525.4                     
mod3   38 2598.5 2847.3 -1261.3   2522.5 2.8745  2     0.2376

Remove animacy:language

# animacy:language

mod5<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + caus_use*poly(year,2) +
              #language
              telicity*language+ finiteness*language+ compound_tense*language+ 
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod5)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + caus_use * poly(year, 2) + telicity *  
    language + finiteness * language + compound_tense * language +  
    control * language + reflpriming * language + caus_use *  
    language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2595.8   2825.0  -1262.9   2525.8     5119 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.3056 -0.2175 -0.1155  0.2098 10.4158 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2139   0.4625  
 lemma  (Intercept) 5.1201   2.2628  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.3748     0.7392   0.507 0.612124    
telicitytelic                      -2.1911     0.4114  -5.326 1.01e-07 ***
animacyyes                          0.8713     0.2077   4.195 2.73e-05 ***
finitenessnonfin                    0.7091     0.2183   3.248 0.001163 ** 
compound_tenseyes                   0.9428     0.3944   2.391 0.016825 *  
genreProsa                         -0.4781     0.1743  -2.743 0.006079 ** 
genreTeatro                        -0.5118     0.2844  -1.800 0.071913 .  
controlyes                         -1.1045     0.3437  -3.214 0.001309 ** 
languageSpanish                     0.1770     0.9835   0.180 0.857194    
reflprimingyes                     -1.3372     0.3749  -3.567 0.000361 ***
caus_use                            0.3403     0.8281   0.411 0.681093    
poly(year, 2)1                     34.7186    16.1796   2.146 0.031887 *  
poly(year, 2)2                      1.7792    14.8574   0.120 0.904680    
telicitytelic:poly(year, 2)1      -23.9476    11.2428  -2.130 0.033168 *  
telicitytelic:poly(year, 2)2      -27.6427    10.1808  -2.715 0.006624 ** 
animacyyes:poly(year, 2)1          -0.2325    11.4751  -0.020 0.983836    
animacyyes:poly(year, 2)2         -21.7332    10.9093  -1.992 0.046353 *  
compound_tenseyes:poly(year, 2)1  -49.6692    21.3738  -2.324 0.020134 *  
compound_tenseyes:poly(year, 2)2  -12.8508    20.9870  -0.612 0.540325    
genreProsa:poly(year, 2)1         -25.9256    12.9227  -2.006 0.044833 *  
genreTeatro:poly(year, 2)1          2.8839    23.3427   0.124 0.901675    
genreProsa:poly(year, 2)2          18.1318    11.4796   1.579 0.114226    
genreTeatro:poly(year, 2)2        -11.1587    22.2394  -0.502 0.615841    
controlyes:poly(year, 2)1          25.3565    13.0019   1.950 0.051150 .  
controlyes:poly(year, 2)2          -5.0792    12.0748  -0.421 0.674015    
caus_use:poly(year, 2)1           -23.3069    23.5053  -0.992 0.321412    
caus_use:poly(year, 2)2            28.1811    22.0188   1.280 0.200593    
telicitytelic:languageSpanish       1.4495     0.5023   2.886 0.003904 ** 
finitenessnonfin:languageSpanish   -0.4902     0.2803  -1.749 0.080301 .  
compound_tenseyes:languageSpanish  -0.7803     0.5800  -1.345 0.178544    
controlyes:languageSpanish          0.4948     0.3635   1.361 0.173460    
languageSpanish:reflprimingyes      0.7956     0.4582   1.736 0.082549 .  
languageSpanish:caus_use           -2.5960     1.0351  -2.508 0.012140 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod4, mod5)
Data: data
Models:
mod5: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod4: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + animacy * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod5   35 2595.8 2825.0 -1262.9   2525.8                     
mod4   36 2597.4 2833.1 -1262.7   2525.4 0.4225  1     0.5157

Remove caus_use:poly(year, 2)

#caus_use:poly(year, 2)

mod6<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + 
              #language
              telicity*language+ finiteness*language+ compound_tense*language+ 
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod6)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + telicity * language + finiteness *  
    language + compound_tense * language + control * language +  
    reflpriming * language + caus_use * language + (1 | lemma) +  
    (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2594.4   2810.5  -1264.2   2528.4     5121 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-7.6787 -0.2171 -0.1152  0.2085  8.9834 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1848   0.4299  
 lemma  (Intercept) 5.1839   2.2768  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)                         0.1967     0.7281   0.270 0.787024    
telicitytelic                      -2.1394     0.4068  -5.260 1.44e-07 ***
animacyyes                          0.8684     0.2072   4.191 2.77e-05 ***
finitenessnonfin                    0.7148     0.2173   3.290 0.001002 ** 
compound_tenseyes                   0.9234     0.3924   2.353 0.018616 *  
genreProsa                         -0.4699     0.1720  -2.731 0.006305 ** 
genreTeatro                        -0.5216     0.2817  -1.852 0.064054 .  
controlyes                         -1.1087     0.3419  -3.243 0.001185 ** 
languageSpanish                     0.2651     0.9820   0.270 0.787234    
reflprimingyes                     -1.3198     0.3716  -3.552 0.000383 ***
caus_use                            0.5812     0.7949   0.731 0.464651    
poly(year, 2)1                     28.2103    13.6509   2.067 0.038777 *  
poly(year, 2)2                     12.2720    12.0529   1.018 0.308591    
telicitytelic:poly(year, 2)1      -29.2756    10.4086  -2.813 0.004914 ** 
telicitytelic:poly(year, 2)2      -22.2533     9.4197  -2.362 0.018157 *  
animacyyes:poly(year, 2)1           0.3898    11.4405   0.034 0.972819    
animacyyes:poly(year, 2)2         -22.2290    10.8756  -2.044 0.040960 *  
compound_tenseyes:poly(year, 2)1  -44.7148    21.2026  -2.109 0.034951 *  
compound_tenseyes:poly(year, 2)2  -17.0961    20.8182  -0.821 0.411525    
genreProsa:poly(year, 2)1         -27.5889    12.7430  -2.165 0.030386 *  
genreTeatro:poly(year, 2)1          3.8331    23.1471   0.166 0.868474    
genreProsa:poly(year, 2)2          18.9237    11.3599   1.666 0.095747 .  
genreTeatro:poly(year, 2)2        -13.3958    22.0805  -0.607 0.544063    
controlyes:poly(year, 2)1          27.2153    12.8699   2.115 0.034459 *  
controlyes:poly(year, 2)2          -6.1055    12.0223  -0.508 0.611560    
telicitytelic:languageSpanish       1.3834     0.4966   2.786 0.005341 ** 
finitenessnonfin:languageSpanish   -0.4947     0.2790  -1.773 0.076250 .  
compound_tenseyes:languageSpanish  -0.7934     0.5774  -1.374 0.169438    
controlyes:languageSpanish          0.4963     0.3620   1.371 0.170362    
languageSpanish:reflprimingyes      0.7952     0.4556   1.745 0.080917 .  
languageSpanish:caus_use           -2.6592     1.0209  -2.605 0.009193 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod6, mod5)
Data: data
Models:
mod6: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod5: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + caus_use * poly(year, 2) + telicity * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod6   33 2594.4 2810.5 -1264.2   2528.4                     
mod5   35 2595.8 2825.0 -1262.9   2525.8 2.5807  2     0.2752

Remove compound_tense:language

#compound_tense:language

mod7<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + 
              #language
              telicity*language+ finiteness*language+ 
              control*language+ reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod7)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + telicity * language + finiteness *  
    language + control * language + reflpriming * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2594.3   2803.9  -1265.2   2530.3     5122 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-7.6895 -0.2169 -0.1160  0.2087  9.1398 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1854   0.4306  
 lemma  (Intercept) 5.1974   2.2798  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2183     0.7280   0.300 0.764268    
telicitytelic                     -2.1272     0.4064  -5.234 1.66e-07 ***
animacyyes                         0.8649     0.2070   4.179 2.93e-05 ***
finitenessnonfin                   0.6857     0.2156   3.181 0.001470 ** 
compound_tenseyes                  0.5360     0.2860   1.874 0.060882 .  
genreProsa                        -0.4599     0.1718  -2.677 0.007429 ** 
genreTeatro                       -0.5151     0.2822  -1.826 0.067912 .  
controlyes                        -1.0980     0.3414  -3.216 0.001298 ** 
languageSpanish                    0.2115     0.9819   0.215 0.829487    
reflprimingyes                    -1.3198     0.3716  -3.552 0.000383 ***
caus_use                           0.5696     0.7929   0.718 0.472487    
poly(year, 2)1                    27.9517    13.6427   2.049 0.040478 *  
poly(year, 2)2                    12.0736    12.0556   1.001 0.316587    
telicitytelic:poly(year, 2)1     -29.0550    10.4027  -2.793 0.005222 ** 
telicitytelic:poly(year, 2)2     -22.1117     9.4262  -2.346 0.018988 *  
animacyyes:poly(year, 2)1         -0.6015    11.4139  -0.053 0.957971    
animacyyes:poly(year, 2)2        -21.9443    10.8817  -2.017 0.043735 *  
compound_tenseyes:poly(year, 2)1 -46.9257    21.6675  -2.166 0.030332 *  
compound_tenseyes:poly(year, 2)2 -25.7056    20.3428  -1.264 0.206365    
genreProsa:poly(year, 2)1        -27.2029    12.7430  -2.135 0.032783 *  
genreTeatro:poly(year, 2)1         5.0229    23.1749   0.217 0.828411    
genreProsa:poly(year, 2)2         18.8820    11.3753   1.660 0.096930 .  
genreTeatro:poly(year, 2)2       -12.5218    22.0669  -0.567 0.570410    
controlyes:poly(year, 2)1         27.8244    12.8710   2.162 0.030635 *  
controlyes:poly(year, 2)2         -6.0172    12.0339  -0.500 0.617060    
telicitytelic:languageSpanish      1.3676     0.4969   2.752 0.005915 ** 
finitenessnonfin:languageSpanish  -0.4503     0.2767  -1.627 0.103640    
controlyes:languageSpanish         0.4967     0.3618   1.373 0.169839    
languageSpanish:reflprimingyes     0.7945     0.4556   1.744 0.081165 .  
languageSpanish:caus_use          -2.6388     1.0199  -2.587 0.009670 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod6, mod7)
Data: data
Models:
mod7: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod6: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + compound_tense * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod7   32 2594.3 2803.9 -1265.2   2530.3                     
mod6   33 2594.4 2810.5 -1264.2   2528.4 1.9428  1     0.1634

Remove control:language

#control:language  

mod8<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + 
              #language
              telicity*language+ finiteness*language+ 
              reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod8)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + telicity * language + finiteness *  
    language + reflpriming * language + caus_use * language +  
    (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2594.3   2797.3  -1266.2   2532.3     5123 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.2338 -0.2157 -0.1158  0.2070  9.0616 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1933   0.4396  
 lemma  (Intercept) 5.2888   2.2997  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2415     0.7327   0.330 0.741689    
telicitytelic                     -2.2645     0.3970  -5.704 1.17e-08 ***
animacyyes                         0.8640     0.2074   4.166 3.10e-05 ***
finitenessnonfin                   0.6564     0.2144   3.061 0.002205 ** 
compound_tenseyes                  0.5214     0.2849   1.830 0.067220 .  
genreProsa                        -0.4658     0.1722  -2.705 0.006831 ** 
genreTeatro                       -0.5328     0.2820  -1.890 0.058821 .  
controlyes                        -0.7786     0.2535  -3.071 0.002135 ** 
languageSpanish                    0.2344     0.9879   0.237 0.812428    
reflprimingyes                    -1.3302     0.3732  -3.564 0.000365 ***
caus_use                           0.6228     0.7957   0.783 0.433735    
poly(year, 2)1                    27.4667    13.6730   2.009 0.044556 *  
poly(year, 2)2                    12.0219    12.0801   0.995 0.319648    
telicitytelic:poly(year, 2)1     -27.9571    10.3842  -2.692 0.007096 ** 
telicitytelic:poly(year, 2)2     -22.3772     9.4331  -2.372 0.017683 *  
animacyyes:poly(year, 2)1         -0.5715    11.4250  -0.050 0.960103    
animacyyes:poly(year, 2)2        -21.5709    10.8929  -1.980 0.047673 *  
compound_tenseyes:poly(year, 2)1 -46.3850    21.6474  -2.143 0.032133 *  
compound_tenseyes:poly(year, 2)2 -25.4520    20.3183  -1.253 0.210327    
genreProsa:poly(year, 2)1        -27.8006    12.7744  -2.176 0.029535 *  
genreTeatro:poly(year, 2)1         3.7350    23.1890   0.161 0.872039    
genreProsa:poly(year, 2)2         18.5382    11.3900   1.628 0.103611    
genreTeatro:poly(year, 2)2       -12.0271    22.0881  -0.545 0.586095    
controlyes:poly(year, 2)1         26.1034    12.8150   2.037 0.041656 *  
controlyes:poly(year, 2)2         -5.3265    12.0252  -0.443 0.657804    
telicitytelic:languageSpanish      1.5127     0.4881   3.099 0.001941 ** 
finitenessnonfin:languageSpanish  -0.4051     0.2748  -1.474 0.140354    
languageSpanish:reflprimingyes     0.8058     0.4569   1.764 0.077783 .  
languageSpanish:caus_use          -2.6849     1.0219  -2.627 0.008606 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod8, mod7)
Data: data
Models:
mod8: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod7: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + control * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod8   31 2594.3 2797.3 -1266.2   2532.3                     
mod7   32 2594.3 2803.9 -1265.2   2530.3 1.9593  1     0.1616

Remove finiteness:language

#finiteness:language 

mod9<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + 
              #language
              telicity*language+ 
              reflpriming*language+ caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod9)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + telicity * language + reflpriming *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2594.5   2791.0  -1267.3   2534.5     5124 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.4590 -0.2169 -0.1156  0.2064  9.3486 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1889   0.4347  
 lemma  (Intercept) 5.2794   2.2977  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2871     0.7308   0.393 0.694388    
telicitytelic                     -2.2640     0.3951  -5.730 1.01e-08 ***
animacyyes                         0.8587     0.2072   4.144 3.41e-05 ***
finitenessnonfin                   0.4133     0.1377   3.002 0.002681 ** 
compound_tenseyes                  0.5057     0.2841   1.780 0.075048 .  
genreProsa                        -0.4491     0.1712  -2.623 0.008719 ** 
genreTeatro                       -0.5080     0.2805  -1.811 0.070142 .  
controlyes                        -0.7727     0.2533  -3.051 0.002284 ** 
languageSpanish                    0.1385     0.9844   0.141 0.888128    
reflprimingyes                    -1.3021     0.3686  -3.533 0.000412 ***
caus_use                           0.6278     0.7937   0.791 0.428996    
poly(year, 2)1                    26.8709    13.6244   1.972 0.048579 *  
poly(year, 2)2                    11.3566    12.0417   0.943 0.345629    
telicitytelic:poly(year, 2)1     -27.6962    10.3742  -2.670 0.007591 ** 
telicitytelic:poly(year, 2)2     -22.3577     9.4265  -2.372 0.017702 *  
animacyyes:poly(year, 2)1         -0.9065    11.4286  -0.079 0.936782    
animacyyes:poly(year, 2)2        -21.3859    10.8939  -1.963 0.049635 *  
compound_tenseyes:poly(year, 2)1 -45.8172    21.5738  -2.124 0.033691 *  
compound_tenseyes:poly(year, 2)2 -24.5888    20.2270  -1.216 0.224121    
genreProsa:poly(year, 2)1        -27.4022    12.7236  -2.154 0.031268 *  
genreTeatro:poly(year, 2)1         2.7554    23.0801   0.119 0.904970    
genreProsa:poly(year, 2)2         18.9378    11.3598   1.667 0.095497 .  
genreTeatro:poly(year, 2)2       -11.3645    21.9875  -0.517 0.605253    
controlyes:poly(year, 2)1         26.4304    12.8087   2.063 0.039068 *  
controlyes:poly(year, 2)2         -4.8303    12.0187  -0.402 0.687760    
telicitytelic:languageSpanish      1.5194     0.4864   3.124 0.001785 ** 
languageSpanish:reflprimingyes     0.7779     0.4533   1.716 0.086170 .  
languageSpanish:caus_use          -2.7015     1.0207  -2.647 0.008129 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod9, mod8)
Data: data
Models:
mod9: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
mod8: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + finiteness * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod9   30 2594.5 2791.0 -1267.3   2534.5                     
mod8   31 2594.3 2797.3 -1266.2   2532.3 2.2273  1     0.1356

Remove language:reflpriming. This only marginally affects the fit, so we remove it for the sake of parsimony.

#language:reflpriming

mod10<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
              control + language + reflpriming + caus_use + poly(year,2) +
              #year
              telicity*poly(year,2) + animacy*poly(year,2) + compound_tense*poly(year,2) + 
              genre*poly(year,2) +
              control*poly(year,2) + 
              #language
              telicity*language+ 
              caus_use*language+
              #random
              (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod10)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    compound_tense * poly(year, 2) + genre * poly(year, 2) +  
    control * poly(year, 2) + telicity * language + caus_use *  
    language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2595.7   2785.5  -1268.8   2537.7     5125 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.2456 -0.2189 -0.1147  0.2083 10.3890 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.195    0.4416  
 lemma  (Intercept) 5.212    2.2831  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2591     0.7274   0.356 0.721720    
telicitytelic                     -2.2369     0.3931  -5.691 1.27e-08 ***
animacyyes                         0.8667     0.2074   4.178 2.94e-05 ***
finitenessnonfin                   0.4087     0.1376   2.971 0.002967 ** 
compound_tenseyes                  0.4930     0.2841   1.735 0.082696 .  
genreProsa                        -0.4533     0.1712  -2.647 0.008119 ** 
genreTeatro                       -0.5017     0.2807  -1.787 0.073881 .  
controlyes                        -0.7834     0.2534  -3.091 0.001994 ** 
languageSpanish                    0.1926     0.9796   0.197 0.844167    
reflprimingyes                    -0.7965     0.2131  -3.738 0.000185 ***
caus_use                           0.5840     0.7903   0.739 0.459962    
poly(year, 2)1                    28.0883    13.5922   2.067 0.038781 *  
poly(year, 2)2                    12.0286    12.0347   0.999 0.317554    
telicitytelic:poly(year, 2)1     -28.9759    10.3656  -2.795 0.005184 ** 
telicitytelic:poly(year, 2)2     -22.1901     9.4332  -2.352 0.018655 *  
animacyyes:poly(year, 2)1         -1.5556    11.4412  -0.136 0.891849    
animacyyes:poly(year, 2)2        -21.5509    10.9011  -1.977 0.048048 *  
compound_tenseyes:poly(year, 2)1 -44.3471    21.5677  -2.056 0.039765 *  
compound_tenseyes:poly(year, 2)2 -24.5765    20.2619  -1.213 0.225153    
genreProsa:poly(year, 2)1        -28.2452    12.6992  -2.224 0.026137 *  
genreTeatro:poly(year, 2)1         1.5550    23.1286   0.067 0.946395    
genreProsa:poly(year, 2)2         18.3940    11.3567   1.620 0.105306    
genreTeatro:poly(year, 2)2       -12.4002    22.0086  -0.563 0.573147    
controlyes:poly(year, 2)1         27.6178    12.8266   2.153 0.031305 *  
controlyes:poly(year, 2)2         -4.7322    12.0577  -0.392 0.694719    
telicitytelic:languageSpanish      1.4819     0.4847   3.058 0.002231 ** 
languageSpanish:caus_use          -2.6242     1.0181  -2.578 0.009952 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod9, mod10) #marginal=remove
Data: data
Models:
mod10: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod9: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + reflpriming * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
mod10   29 2595.7 2785.5 -1268.8   2537.7                       
mod9    30 2594.5 2791.0 -1267.3   2534.5 3.1252  1    0.07709 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Remove compound_tense:poly(year, 2). ANOVA shows it is not ok to remove, as this significantly affects the fit.

#compound_tense:poly(year, 2)2

mod11<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2) + animacy*poly(year,2) + 
               genre*poly(year,2) +
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod11)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + animacy * poly(year, 2) +  
    genre * poly(year, 2) + control * poly(year, 2) + telicity *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2599.9   2776.7  -1273.0   2545.9     5127 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.1150 -0.2191 -0.1159  0.2085 10.1111 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1987   0.4458  
 lemma  (Intercept) 5.2101   2.2826  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                              Estimate Std. Error z value Pr(>|z|)    
(Intercept)                     0.2731     0.7262   0.376 0.706892    
telicitytelic                  -2.2468     0.3928  -5.719 1.07e-08 ***
animacyyes                      0.8613     0.2071   4.158 3.21e-05 ***
finitenessnonfin                0.3997     0.1371   2.915 0.003552 ** 
compound_tenseyes               0.2537     0.2823   0.899 0.368776    
genreProsa                     -0.4490     0.1707  -2.631 0.008513 ** 
genreTeatro                    -0.5054     0.2800  -1.805 0.071014 .  
controlyes                     -0.7598     0.2530  -3.003 0.002670 ** 
languageSpanish                 0.2007     0.9786   0.205 0.837503    
reflprimingyes                 -0.7930     0.2127  -3.728 0.000193 ***
caus_use                        0.5923     0.7859   0.754 0.451007    
poly(year, 2)1                 27.3278    13.5538   2.016 0.043774 *  
poly(year, 2)2                 11.5955    12.0030   0.966 0.334020    
telicitytelic:poly(year, 2)1  -30.3751    10.2889  -2.952 0.003155 ** 
telicitytelic:poly(year, 2)2  -22.7445     9.3581  -2.430 0.015080 *  
animacyyes:poly(year, 2)1      -1.1483    11.4135  -0.101 0.919859    
animacyyes:poly(year, 2)2     -21.0048    10.8748  -1.932 0.053419 .  
genreProsa:poly(year, 2)1     -29.1223    12.6703  -2.298 0.021536 *  
genreTeatro:poly(year, 2)1     -0.5833    23.0994  -0.025 0.979853    
genreProsa:poly(year, 2)2      17.0467    11.3134   1.507 0.131869    
genreTeatro:poly(year, 2)2    -15.8250    21.9098  -0.722 0.470124    
controlyes:poly(year, 2)1      28.6520    12.7984   2.239 0.025175 *  
controlyes:poly(year, 2)2      -4.3995    12.0422  -0.365 0.714859    
telicitytelic:languageSpanish   1.4747     0.4837   3.049 0.002296 ** 
languageSpanish:caus_use       -2.6588     1.0144  -2.621 0.008765 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod11, mod10) # not ok
Data: data
Models:
mod11: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod10: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)  
mod11   27 2599.9 2776.7 -1273.0   2545.9                      
mod10   29 2595.7 2785.5 -1268.8   2537.7 8.265  2    0.01604 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Back to mod10, remove animacy:poly(year, 2), which only marginally affects the fit, so we remove it for the sake of parsimony.

#animacy:poly(year, 2)1 

mod12<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2)+ compound_tense*poly(year,2) + 
               genre*poly(year,2) +
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod12)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + compound_tense * poly(year,  
    2) + genre * poly(year, 2) + control * poly(year, 2) + telicity *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2595.8   2772.6  -1270.9   2541.8     5127 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-11.6137  -0.2193  -0.1148   0.2067   9.9198 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1994   0.4466  
 lemma  (Intercept) 5.2094   2.2824  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2844     0.7271   0.391 0.695712    
telicitytelic                     -2.2402     0.3930  -5.699 1.20e-08 ***
animacyyes                         0.8563     0.2069   4.140 3.48e-05 ***
finitenessnonfin                   0.3961     0.1372   2.887 0.003887 ** 
compound_tenseyes                  0.4842     0.2833   1.709 0.087495 .  
genreProsa                        -0.4371     0.1708  -2.559 0.010490 *  
genreTeatro                       -0.4871     0.2813  -1.732 0.083352 .  
controlyes                        -0.7756     0.2533  -3.062 0.002199 ** 
languageSpanish                    0.1671     0.9793   0.171 0.864520    
reflprimingyes                    -0.7960     0.2118  -3.759 0.000171 ***
caus_use                           0.5272     0.7913   0.666 0.505245    
poly(year, 2)1                    29.4819    13.4208   2.197 0.028039 *  
poly(year, 2)2                     6.4140    11.6002   0.553 0.580316    
telicitytelic:poly(year, 2)1     -29.9739    10.2595  -2.922 0.003483 ** 
telicitytelic:poly(year, 2)2     -24.9774     9.3679  -2.666 0.007670 ** 
compound_tenseyes:poly(year, 2)1 -43.9612    21.3327  -2.061 0.039328 *  
compound_tenseyes:poly(year, 2)2 -24.6607    19.9895  -1.234 0.217321    
genreProsa:poly(year, 2)1        -30.5676    12.6635  -2.414 0.015786 *  
genreTeatro:poly(year, 2)1        -0.3106    23.2091  -0.013 0.989322    
genreProsa:poly(year, 2)2         20.2971    11.2061   1.811 0.070101 .  
genreTeatro:poly(year, 2)2       -11.2673    22.1161  -0.509 0.610428    
controlyes:poly(year, 2)1         27.1658     9.8018   2.772 0.005580 ** 
controlyes:poly(year, 2)2        -19.6613     9.3335  -2.107 0.035159 *  
telicitytelic:languageSpanish      1.4676     0.4840   3.032 0.002429 ** 
languageSpanish:caus_use          -2.5584     1.0196  -2.509 0.012101 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod12, mod10) #marginal=remove
Data: data
Models:
mod12: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod10: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + animacy * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
mod12   27 2595.8 2772.6 -1270.9   2541.8                     
mod10   29 2595.7 2785.5 -1268.8   2537.7 4.1168  2     0.1277

Remove genre:poly(year, 2). This significantly affects the fit.

#genreTeatro:poly(year, 2)1 

mod13<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre +
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2)+ compound_tense*poly(year,2) + 
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
#summary(mod13)
anova(mod12, mod13) #not ok
Data: data
Models:
mod13: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod12: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
mod13   23 2601.4 2752.0 -1277.7   2555.4                        
mod12   27 2595.8 2772.6 -1270.9   2541.8 13.629  4   0.008578 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#model 12 final (not possible to remove anything else)

Back to mod12, we could try to remove the simple terms that are not involved in interactions: finiteness, reflpriming, animacy: however these are all highly significant in the model summary of mod12 and removing them significantly affects the fit, as shown in the code below:

# remove finiteness

mod14<-glmer(coding ~ telicity + animacy +  compound_tense + genre +
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2)+ compound_tense*poly(year,2) + 
               genre*poly(year,2) +
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod14)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + compound_tense + genre + control +  
    language + reflpriming + caus_use + poly(year, 2) + telicity *  
    poly(year, 2) + compound_tense * poly(year, 2) + genre *  
    poly(year, 2) + control * poly(year, 2) + telicity * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2602.4   2772.6  -1275.2   2550.4     5128 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-11.7703  -0.2226  -0.1158   0.2066   9.5674 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.184    0.4289  
 lemma  (Intercept) 5.220    2.2847  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.3630     0.7264   0.500 0.617290    
telicitytelic                     -2.2823     0.3915  -5.829 5.57e-09 ***
animacyyes                         0.8665     0.2057   4.213 2.52e-05 ***
compound_tenseyes                  0.4001     0.2818   1.420 0.155740    
genreProsa                        -0.4195     0.1695  -2.475 0.013317 *  
genreTeatro                       -0.4640     0.2793  -1.661 0.096641 .  
controlyes                        -0.7349     0.2518  -2.918 0.003521 ** 
languageSpanish                    0.1661     0.9795   0.170 0.865334    
reflprimingyes                    -0.7835     0.2100  -3.731 0.000191 ***
caus_use                           0.5710     0.7901   0.723 0.469831    
poly(year, 2)1                    28.5120    13.3338   2.138 0.032490 *  
poly(year, 2)2                     5.9569    11.5094   0.518 0.604758    
telicitytelic:poly(year, 2)1     -29.1353    10.2344  -2.847 0.004416 ** 
telicitytelic:poly(year, 2)2     -25.2423     9.3258  -2.707 0.006795 ** 
compound_tenseyes:poly(year, 2)1 -44.7673    21.2548  -2.106 0.035185 *  
compound_tenseyes:poly(year, 2)2 -22.0843    19.8380  -1.113 0.265609    
genreProsa:poly(year, 2)1        -28.5563    12.5449  -2.276 0.022826 *  
genreTeatro:poly(year, 2)1        -1.6448    23.0160  -0.071 0.943028    
genreProsa:poly(year, 2)2         19.4068    11.1233   1.745 0.081037 .  
genreTeatro:poly(year, 2)2       -10.1599    21.8823  -0.464 0.642435    
controlyes:poly(year, 2)1         27.3656     9.7869   2.796 0.005172 ** 
controlyes:poly(year, 2)2        -19.8295     9.3212  -2.127 0.033391 *  
telicitytelic:languageSpanish      1.4977     0.4829   3.102 0.001925 ** 
languageSpanish:caus_use          -2.6191     1.0161  -2.578 0.009951 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod12, mod14) #not ok
Data: data
Models:
mod14: coding ~ telicity + animacy + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod12: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)   
mod14   26 2602.4 2772.6 -1275.2   2550.4                       
mod12   27 2595.8 2772.6 -1270.9   2541.8 8.622  1   0.003321 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# remove animacy

mod15<-glmer(coding ~ telicity + finiteness + compound_tense + genre +
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2)+ compound_tense*poly(year,2) + 
               genre*poly(year,2) +
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod15)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + finiteness + compound_tense + genre + control +  
    language + reflpriming + caus_use + poly(year, 2) + telicity *  
    poly(year, 2) + compound_tense * poly(year, 2) + genre *  
    poly(year, 2) + control * poly(year, 2) + telicity * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2611.5   2781.7  -1279.7   2559.5     5128 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-8.6668 -0.2219 -0.1167  0.2019  9.8757 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1874   0.4329  
 lemma  (Intercept) 5.4416   2.3327  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                   Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.405477   0.732214   0.554 0.579738    
telicitytelic                     -2.228758   0.387872  -5.746 9.13e-09 ***
finitenessnonfin                   0.406703   0.136069   2.989 0.002799 ** 
compound_tenseyes                  0.496729   0.281969   1.762 0.078129 .  
genreProsa                        -0.467873   0.169962  -2.753 0.005909 ** 
genreTeatro                       -0.485781   0.279701  -1.737 0.082424 .  
controlyes                        -0.002561   0.174363  -0.015 0.988283    
languageSpanish                    0.074091   0.988589   0.075 0.940258    
reflprimingyes                    -0.801201   0.210666  -3.803 0.000143 ***
caus_use                           0.542181   0.788905   0.687 0.491920    
poly(year, 2)1                    29.190220  13.393391   2.179 0.029298 *  
poly(year, 2)2                     6.023283  11.488203   0.524 0.600069    
telicitytelic:poly(year, 2)1     -31.205569  10.219843  -3.053 0.002262 ** 
telicitytelic:poly(year, 2)2     -22.406518   9.289687  -2.412 0.015866 *  
compound_tenseyes:poly(year, 2)1 -42.819094  21.172315  -2.022 0.043134 *  
compound_tenseyes:poly(year, 2)2 -24.675497  19.914011  -1.239 0.215308    
genreProsa:poly(year, 2)1        -28.657149  12.580072  -2.278 0.022728 *  
genreTeatro:poly(year, 2)1         0.936845  23.111253   0.041 0.967666    
genreProsa:poly(year, 2)2         19.185881  11.070621   1.733 0.083088 .  
genreTeatro:poly(year, 2)2       -12.746166  21.958101  -0.580 0.561593    
controlyes:poly(year, 2)1         28.008451   9.745994   2.874 0.004055 ** 
controlyes:poly(year, 2)2        -20.110222   9.269633  -2.169 0.030047 *  
telicitytelic:languageSpanish      1.499075   0.480267   3.121 0.001800 ** 
languageSpanish:caus_use          -2.474567   1.013529  -2.442 0.014625 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod12, mod15) #not ok
Data: data
Models:
mod15: coding ~ telicity + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod12: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
mod15   26 2611.5 2781.7 -1279.8   2559.5                         
mod12   27 2595.8 2772.6 -1270.9   2541.8 17.718  1  2.562e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# remove reflpriming

mod16<-glmer(coding ~ telicity + finiteness + animacy + compound_tense + genre +
               control + language +  caus_use + poly(year,2) +
               #year
               telicity*poly(year,2)+ compound_tense*poly(year,2) + 
               genre*poly(year,2) +
               control*poly(year,2) + 
               #language
               telicity*language+ 
               caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)
summary(mod16)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + finiteness + animacy + compound_tense + genre +  
    control + language + caus_use + poly(year, 2) + telicity *  
    poly(year, 2) + compound_tense * poly(year, 2) + genre *  
    poly(year, 2) + control * poly(year, 2) + telicity * language +  
    caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2608.8   2779.1  -1278.4   2556.8     5128 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-11.5964  -0.2205  -0.1168   0.2060   8.7160 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.2076   0.4557  
 lemma  (Intercept) 5.2234   2.2855  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                        0.2072     0.7275   0.285  0.77574    
telicitytelic                     -2.2234     0.3916  -5.677 1.37e-08 ***
finitenessnonfin                   0.3900     0.1372   2.842  0.00449 ** 
animacyyes                         0.8620     0.2064   4.177 2.95e-05 ***
compound_tenseyes                  0.4806     0.2817   1.706  0.08801 .  
genreProsa                        -0.4178     0.1706  -2.449  0.01434 *  
genreTeatro                       -0.4301     0.2815  -1.528  0.12657    
controlyes                        -0.7841     0.2528  -3.102  0.00192 ** 
languageSpanish                    0.1607     0.9807   0.164  0.86984    
caus_use                           0.4973     0.7926   0.627  0.53036    
poly(year, 2)1                    29.5471    13.3535   2.213  0.02692 *  
poly(year, 2)2                     4.6329    11.5560   0.401  0.68849    
telicitytelic:poly(year, 2)1     -28.0188    10.1980  -2.747  0.00601 ** 
telicitytelic:poly(year, 2)2     -24.9587     9.3513  -2.669  0.00761 ** 
compound_tenseyes:poly(year, 2)1 -46.0537    21.1852  -2.174  0.02972 *  
compound_tenseyes:poly(year, 2)2 -21.3050    19.9558  -1.068  0.28570    
genreProsa:poly(year, 2)1        -31.2731    12.6468  -2.473  0.01341 *  
genreTeatro:poly(year, 2)1        -3.2607    23.3435  -0.140  0.88891    
genreProsa:poly(year, 2)2         22.4521    11.2151   2.002  0.04529 *  
genreTeatro:poly(year, 2)2        -8.1227    22.1365  -0.367  0.71367    
controlyes:poly(year, 2)1         26.2792     9.8044   2.680  0.00735 ** 
controlyes:poly(year, 2)2        -21.2833     9.3111  -2.286  0.02227 *  
telicitytelic:languageSpanish      1.4715     0.4830   3.047  0.00232 ** 
languageSpanish:caus_use          -2.6181     1.0214  -2.563  0.01037 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(mod12, mod16) #not ok
Data: data
Models:
mod16: coding ~ telicity + finiteness + animacy + compound_tense + genre + control + language + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
mod12: coding ~ telicity + animacy + finiteness + compound_tense + genre + control + language + reflpriming + caus_use + poly(year, 2) + telicity * poly(year, 2) + compound_tense * poly(year, 2) + genre * poly(year, 2) + control * poly(year, 2) + telicity * language + caus_use * language + (1 | lemma) + (1 | author)
      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
mod16   26 2608.8 2779.1 -1278.4   2556.8                         
mod12   27 2595.8 2772.6 -1270.9   2541.8 15.064  1  0.0001039 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The final model is mod12, which proves as the minimally adequate model

Model report

Refit mod12 after setting the reference level of the dependent variable data$coding to zero, and produce the reports and diagnostics of the model.

data$coding <- relevel(data$coding, ref = "zero")  # Now "antic" is the level being predicted

mod<-glmer(coding ~ telicity + animacy + finiteness + compound_tense + genre + 
               control + language + reflpriming + caus_use + poly(year,2) +
               #year
               telicity*poly(year,2) + compound_tense*poly(year,2) + genre*poly(year,2) + 
               control*poly(year,2)  +
               #language
               telicity*language+ caus_use*language+
               #random
               (1|lemma) + (1|author), family="binomial", data=data, nAGQ=0)

summary(mod)
Generalized linear mixed model fit by maximum likelihood (Adaptive
  Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]
 Family: binomial  ( logit )
Formula: coding ~ telicity + animacy + finiteness + compound_tense + genre +  
    control + language + reflpriming + caus_use + poly(year,  
    2) + telicity * poly(year, 2) + compound_tense * poly(year,  
    2) + genre * poly(year, 2) + control * poly(year, 2) + telicity *  
    language + caus_use * language + (1 | lemma) + (1 | author)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2595.8   2772.6  -1270.9   2541.8     5127 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.9198 -0.2067  0.1148  0.2193 11.6137 

Random effects:
 Groups Name        Variance Std.Dev.
 author (Intercept) 0.1994   0.4466  
 lemma  (Intercept) 5.2094   2.2824  
Number of obs: 5154, groups:  author, 616; lemma, 40

Fixed effects:
                                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)                       -0.2844     0.7271  -0.391 0.695712    
telicitytelic                      2.2402     0.3930   5.699 1.20e-08 ***
animacyyes                        -0.8563     0.2069  -4.140 3.48e-05 ***
finitenessnonfin                  -0.3961     0.1372  -2.887 0.003887 ** 
compound_tenseyes                 -0.4842     0.2833  -1.709 0.087495 .  
genreProsa                         0.4371     0.1708   2.559 0.010490 *  
genreTeatro                        0.4871     0.2813   1.732 0.083352 .  
controlyes                         0.7756     0.2533   3.062 0.002199 ** 
languageSpanish                   -0.1671     0.9793  -0.171 0.864520    
reflprimingyes                     0.7960     0.2118   3.759 0.000171 ***
caus_use                          -0.5272     0.7913  -0.666 0.505245    
poly(year, 2)1                   -29.4819    13.4208  -2.197 0.028039 *  
poly(year, 2)2                    -6.4140    11.6002  -0.553 0.580316    
telicitytelic:poly(year, 2)1      29.9739    10.2595   2.922 0.003483 ** 
telicitytelic:poly(year, 2)2      24.9774     9.3679   2.666 0.007670 ** 
compound_tenseyes:poly(year, 2)1  43.9612    21.3327   2.061 0.039328 *  
compound_tenseyes:poly(year, 2)2  24.6607    19.9895   1.234 0.217321    
genreProsa:poly(year, 2)1         30.5676    12.6635   2.414 0.015786 *  
genreTeatro:poly(year, 2)1         0.3106    23.2091   0.013 0.989322    
genreProsa:poly(year, 2)2        -20.2971    11.2061  -1.811 0.070101 .  
genreTeatro:poly(year, 2)2        11.2673    22.1161   0.509 0.610428    
controlyes:poly(year, 2)1        -27.1658     9.8018  -2.772 0.005580 ** 
controlyes:poly(year, 2)2         19.6613     9.3335   2.107 0.035159 *  
telicitytelic:languageSpanish     -1.4676     0.4840  -3.032 0.002429 ** 
languageSpanish:caus_use           2.5584     1.0196   2.509 0.012101 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
report<-list_report(mod, data$coding)
diagn<-make_diagnostics(mod, data$coding)

## ---------------------------------------------------------------------------------
data$pred_diac <- predict(mod,type="response")
data$pred_diac <- ifelse(data$pred_diac>0.5,"anticaus", "zero")
prop.table(table(data$pred_diac,data$coding),1)*100
          
                zero     antic
  anticaus  6.068189 93.931811
  zero     89.473684 10.526316
predmoddiac<-as.data.frame(table(data$pred_diac, data$coding))


## ---------------------------------------------------------------------------------

diagn %>%
  mutate_if(is.numeric, ~ round(.x, 2)) %>%
  kbl() %>%
  kable_styling()
Test Fit
AIC 2595.78
BIC 2772.56
R$^2$ (conditional) 0.67
R$^2$ (marginal) 0.12
C 0.97
Dxy 0.93
Observations 5154.00
## ---------------------------------------------------------------------------------

report$fixedsmall$LogOdds <- log(report$fixedsmall$OR)


report$fixedsmall %>% 
  mutate_if(is.numeric, ~ round(.x, 2)) %>%
  kbl() %>%
  kable_styling()
Variable Value OR p LogOdds
\textsc{ } (Intercept) 7.500000e-01 0.70 -0.28
\textsc{Telicity} telic 9.390000e+00 0.00*** 2.24
\textsc{Animacy} yes 4.200000e-01 0.00*** -0.86
\textsc{Finiteness} nonfin 6.700000e-01 0.00** -0.40
\textsc{Compound Tense [Yes]} NA 6.200000e-01 0.09. -0.48
\textsc{Genre} Prosa 1.550000e+00 0.01* 0.44
\textsc{Genre} Teatro 1.630000e+00 0.08. 0.49
\textsc{Control} yes 2.170000e+00 0.00** 0.78
\textsc{Language} Spanish 8.500000e-01 0.86 -0.17
\textsc{Reflpriming} yes 2.220000e+00 0.00*** 0.80
\textsc{Caus Use} N words 5.900000e-01 0.51 -0.53
\textsc{Year} 1st degree 0.000000e+00 0.03* -29.48
\textsc{Year} 2nd degree 0.000000e+00 0.58 -6.41
\textsc{Telicity} telic × year [1st degree] 1.041106e+13 0.00** 29.97
\textsc{Telicity} telic × year [2nd degree] 7.039504e+10 0.01** 24.98
\textsc{Compound Tense [Yes] × Year [1st Degree]} NA 1.236238e+19 0.04* 43.96
\textsc{Compound Tense [Yes] × Year [2nd Degree]} NA 5.128566e+10 0.22 24.66
\textsc{Genre} Prosa × year [1st degree] 1.885190e+13 0.02* 30.57
\textsc{Genre} Teatro × year [1st degree] 1.360000e+00 0.99 0.31
\textsc{Genre} Prosa × year [2nd degree] 0.000000e+00 0.07. -20.30
\textsc{Genre} Teatro × year [2nd degree] 7.822168e+04 0.61 11.27
\textsc{Control} yes × year [1st degree] 0.000000e+00 0.01** -27.17
\textsc{Control} yes × year [2nd degree] 3.457896e+08 0.04* 19.66
\textsc{Telicity} telic × language [Spanish] 2.300000e-01 0.00** -1.47
\textsc{Language} Spanish × caus use 1.292000e+01 0.01* 2.56

Model Visualisation

Random effects

Figure 4:

ranef_data <- lme4::ranef(mod)[["lemma"]]

names <- rownames(ranef_data)
rownames(ranef_data) <- NULL
ranef_data <- cbind(names,ranef_data)

ranefdata2 <-
  left_join(ranef_data,
            data %>% dplyr::select(lemma, language)%>% rename(names=lemma) %>% unique,
            by = "names")

ranefdata2<- ranefdata2 %>% 
  rename(Intercept = `(Intercept)`, Variable= names) %>% 
  mutate(color = ifelse(language == "italian", "red", "#f1947a"))

colors <- ranefdata2$color[order(ranefdata2$Intercept)]

ranefdata2 %>% 
  ggplot(aes(y = Intercept, x = reorder(Variable, Intercept), fill=language, pattern=Intercept>0)) + 
  geom_bar_pattern(stat="identity",
                   position = position_dodge(0.9), 
                   pattern_fill = "black",
                   pattern_angle = 45,
                   pattern_density = 0.1,
                   pattern_spacing = 0.025,
                   pattern_key_scale_factor = 0.6,
                   alpha=0.8,
                   colour="#e9ecef") +
  scale_fill_manual(name = "Language", values = setNames(c("red", "#f1947a"),c("Italian", "Spanish")), labels = c( "Italian", "Spanish"))+
  scale_pattern_manual(values = c("none", "stripe"), labels=c("zero", "anticausative"))+
  labs(y = "Log-odds", x="LEMMA", pattern= "Coding pattern") +
  coord_flip() +
  theme_minimal(base_size = 9)+
  guides(pattern = guide_legend(override.aes = list(fill = "grey")),
         fill = guide_legend(override.aes = list(pattern = "none")))+
  theme(axis.text.y = element_text(colour= colors))

Simple effects

Figure 5:

effects_list2 <- purrr::map(c( "finiteness","reflpriming", "animacy"),
                           ~simpleff(mod, .x) + 
    theme_minimal(base_size = 9, base_family = "cambria")+
    labs(x="", y="")+
    theme(text = element_text(colour = "black"),
          axis.text = element_text(colour = "black")
    )
)

cowplot::plot_grid(plotlist = effects_list2,  align = "v")

Figure 6:

year_eff<-makeff(mod, "year")
yearplot<-ggplot(year_eff, aes(x=x, y=predicted, group=1)) +
  geom_line(size=0.7, color=safe[1])+
  labs(x= "Real time", y="")+
  scale_y_continuous(breaks = scales::pretty_breaks(n = 6), limits = c(0,1), labels = scales::percent)+
  theme_minimal(base_size = 9)

yearplot<-yearplot+ggtitle("YEAR")
yearplot +  theme_minimal(base_size = 15) + geom_line(size=1.2, color=safe[1])

Interactions

Figure 7:

diacsmooth(mod, var=c("year", "compound_tense"))

Figure 8:

diacsmooth(mod, var=c("year", "control"))

Figure 9:

diacsmooth(mod, var=c("year", "telicity"))

Figure 10

diacsmooth(mod, var=c("year", "genre"))

Figure 11:

interplot(mod, var=c("telicity", "language"))

Figure 12:

df<-table(data$azion, data$coding, data$language) %>% as.data.frame()
colnames(df)<-c("var", "altern", "language", "freq")
df$var<-df$var %>%  fct_relevel(c("accomplishment", "achievement", "degree", "activity"))
 
 ggplot(df, aes(y=freq, x=var, fill=altern)) +
     geom_bar(position="fill", stat="identity", alpha=0.8)+
     scale_y_continuous(labels = scales::percent)+
     theme(legend.title = element_blank())+
     labs (x="", y= "")+ coord_flip()+
     facet_wrap(vars(language), ncol = 5)+
     scale_fill_manual(values=safe[c(2,1)])

Figure 13:

diacsmooth(mod, var=c("caus_use", "language"))+xlab("Causal %")

Figure 14:

caus_eff<-makeff(mod, "caus_use")

causplot<-ggplot(caus_eff, aes(x=x, y=predicted, group=1)) +
  geom_line(size=1.2, color=safe[1])+
  labs(title= "CAUSALNESS DEGREE", x="Causalness degree", y="")+
  scale_y_continuous(breaks = scales::pretty_breaks(n = 6), limits = c(0,1), labels = scales::percent)+
  theme_minimal(base_size = 9)

causplot +  theme_minimal(base_size = 15) + geom_line(size=1.2, color=safe[1])